If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+4n-92=0
a = 1; b = 4; c = -92;
Δ = b2-4ac
Δ = 42-4·1·(-92)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{6}}{2*1}=\frac{-4-8\sqrt{6}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{6}}{2*1}=\frac{-4+8\sqrt{6}}{2} $
| n2+4n-92=0 | | 3x/12+6/12=4x/12+2/12 | | 7.7=8.9-0.4x | | 37.93=8g+3.93 | | 3(n+2)=5n+3(n+1) | | 9.50h-11h+40=399.50 | | 1.7=3.7-0.4x | | 3(n+2+2)=5(n+n+1*3) | | x/3+20=0 | | 9.50*h+11*h+40=399.50 | | 9x+2x-8x-5=4 | | 11÷6k=65 | | 9.50*h+11*h-40=399.50 | | X+3x+9-7=14 | | (1/3)v=2-(2/9)v | | 8x=74+2x=56=180 | | x-7^2=1 | | -6(3-3a$-8(6a+5)=32 | | 8x+3=-45 | | 4(5x+3x+2)=264 | | 37.45=7g+3.71 | | 8x-28=64+6x | | 115-w=205 | | 45+x=98 | | 5m^2+2=-m | | 9.50h+11h+40=399.50 | | -n^2+91n+92=0 | | 45+x=58 | | 7x+23=28+16x | | 5x+3x-14=103-x | | 4x+2=4*(x-2) | | 6x=358 |